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A method of analysis for the interaction between electromagnetic waves

and a non-uniform plasma flow is presented. The electromagnetic waves

are taken to be in the microwave range. By using a fully-ionized gas as

a model, two coupled sets of macroscopic equations are obtained: the flow

equations and the field equations. Special consideration is given to the case

where diffusion and charge separation can be disregarded. It is shown that

both sets of equations can be reduced to useful forms. Physical significance

of these equations and extension of this method to include charge separation

and partially ionized plasmas are briefly discussed.
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MACROSCOPIC EQUATIONS GOVERNING THE INTERACTION
OF ELECTROMAGNETIC WAVES WITH NON-

UNIFORM PLASMA FLOWS

I. INTRODUCTION

Propagation of electromagnetic waves in a plasma has been studied by

many investigators, but generally the physical properties of the plasma is

taken as fixed or even uniform, only slightly modified by the interactions.

Thus, the mathematical problem is a linear one. On the other hand, studies

by thermo-nuclear physicists of plasma heating deal with quiescent plasmas

and attentions are generally directed to the energy absorption and exchange

processes.

In this study, a non-uniform plasma is considered and the field strength

may be large enough to produce strong interactions which, in turn, control

the propagation of the electromagnetic waves and determine the flow field

and the state of the plasma gas. The wavelength of the external electro-

magnetic waves is assumed to be in the microwave range.

This analysis is limited to a study of the quasi-steady case; i. e. , it

is applicable to the case where the flow field of the plasma is a steady

one in the absence of electromagnetic waves and the flow quantities

and the physical properties of the plasma reach a quasi-steady state

after the electromagnetic field has acted on the plasma for a sufficiently

long time. By using the macroscopic equations of motion and the Maxwell

equations, a method of analysis is developed in this paper which yields two
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sets of differential equations. The first set of equations is time-independent

and consists of the continuity, momentum, and energy equations governing the

motion of the plasma. The second set of equations governs the wave

propagation. These two sets of equations are coupled. In obtaining these

equations, however, several approximations are made in order to reduce

them to manageable forms.

Application of these equations to several problems are being carried

out and will be reported later. It is seen that, in addition to the familiar

difficult problem of treating electromagnetic wave propagation in a non-uniform

medium, the non-linearity of the flow equations adds to the complexity of the

interaction problem.



II. METHOD OF ANALYSIS AND BASIC EQUATIONS - TWO-FLUID MODEL

The method of analysis and the basic equations will be developed based on

a two-fluid model, namely, the plasma is fully ionized and consists of protons

and electrons. Extension to other cases can be done without any essential

difficulty and will be indicated later.

The macroscopic equations governing the motion of the plasma are

assumed to have the following form (ref. 1)

6 n aat = -div (nLVa,), (1)
at

D'a e.1m(X nCL - =- - vpC + (div a ) + - nCL (E + V.l x B) + R(L (2)Dt c

t n Vm 2+ Y- kn T=-div Vm n V2+ --I kn T -rr

e n V -E - VQR K + Q(+ C + - n (3)

p = kn TC.  (4)

where a = e or i referring to protons or electrons, respectively, e i = e = -eel

r CL is the viscous stress tensor, q C is the heat conduction rate per unit volume,

R L is the momentum transferred to the a particles by collisions with particles

of the other species, Qi is the heat addition rate per unit volume from the

electrons to the protons, Q is given bye

Qe =Re*(Vi. e) (5)
e I e)- % i5

and other symbols have their usual meanings. All electromagnetic quantities

are in electromagnetic units.
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The external electromagnetic field will be assumed to have the form

exp i(u)t-kY)I, and no steady electric or magnetic field is applied. Because

of the interactions between the electromagnetic waves and the plasma, disper-

sion of the waves will occur. It is reasonable to expect that there will be

periodic oscillations of the physical and flow properties of the plasma with

respect to their time-averaged mean values. A basic assumption will be made

that the number density fluctuations are small compared to their respective

mean values at every point in the flow field, and may be omitted from the

dynamical equations. This is believed to be valid for sufficiently large plasma

densities and for values of co) in the microwave range. However, the velocity

fluctuations, inparticular, those oi the electrons, cannot be ignored on the

same ground.

The mean value of a physical or flow quantity A is defined by

<A> = T I Adt- J

0 t

where T is a properly chosen time interval, e. g., in the present problem,

any multiple of the periodicity of A. The requirement that <A> be independent

of t can be regarded as a formal definition of A being quasi-steady. The fluctu-

ating part of A, denoted by A', is given by

A=<A> +A'.

Evidently, <A'>= 0 and< A/at>= a<A>/t.

Time averaging of the above macroscopic equations yields the following

equations:

div (nC VC ) 0, (6)
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m n 7V +V VVL VP+ (div TT,

e a -I- -

+ c n,< Va x B> +Ra (7)

div V - man(V 2 + <V > + - knT - r) +  CL

eQ - -- -

-- n < V' E > -V .< *. R > + Q , (8)c L a a a Ca

p = kna TO , (9)

where, and also hereafter, the symbols without primes denote the mean values,

while the primed symbols denote the fluctuations. In obtaining Eq. (6), the term

<n' VT> is neglected in view of the assumption that in all dynamic equations the

number density fluctuations are disregarded.

By using Eq. (5), the energy equation (8) can be written in the following form:

div i- mini (V+<Vi'2 >) + Y- kniTi- r + i

= en < E > - V. R - < (10)
c ni<VE V~Vi e > +Qi,(0

div I 1 -men e e l + ie +<e >)+ kn Te 1
e -' - -,'

--- nc <  e > + V. " Re + < Vi R I > - Qi' (11)
- ~ e Ve 1 ~'e 1V eR~(1

Eqs. (6) to (11) will be called the "flow equations".

By subtracting Eqs. (6) to (9) from Eqs. (1) to (4), respectively, the

following system of equations is obtained:

an
+ div n r') = 0 (12)

at (n
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m n - a + % + < >)
na(! V + ~ r +V*va+~

Vp + (div rTT ) + _ n. _ na TVa B)
c ce+ ean B > + (13)
C C' '

(m, v V' + - kna T')= - div (mCnL L V-- 1 (m V Y-1 -,

+ Y knaT - rra) + V mana~ z + I knaTa -T) +
Y- 1 (2Y- I

ea - - V' R' '+- naV ,EV *J.'V R' 'V~ Ct<V - R>.+ Q.

pa aaa a a a

eae

+ n . (• <VaA. > . (14)
C

p' = knaT' (15)

These equations must be supplemented by the Maxwell equations for the

electromagnetic field:

dive = 4rrc 2 u = 4rTec I(ni - ne) +(nj' = ne ) , (16)

div B= 0 , (17)

curl = - (18)

curl' C = - c+ 4 + it (19)

where itdenotes the total current and is assumed to be

it = y + j (20)

with "= e (n i V. -ne Ve) n (21)

-_= (ni - ne )  (22)c 1 e1

Two equations of charge conservation may be obtained. The equation

div =0 follows from Eqs. (6). The other one can be obtained from the
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Maxwell equations and put in the following form:

e a (ni - ne ) div j (23)

It is clear that Eq. (23) is consistent with Eqs. (12). Eqs. (12) to (19)

govern the fluctuations of the flow and the field quantities. For reasons to

be given shortly, the equations will be called the "field equations", which

are evidently coupled with the "flow equations", Eqs. (6) to (9).
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III. REDUCTION OF THE FIELD EQUATIONS

The field equations (12) to (15) will be simplified based on physical

reasonings generally adopted for ionized gases, e. g., in Spitzer's treatise

(ref. 2). Additional approximations, however, are found necessary in

order to reduce these equations to manageable forms

The non-linear inertia terms Va'' VV ' -< VCL.VVLI> in Eqs. (13) will

be considered first. Assume that the velocity fluctuation Ve ' of the electrons

is a function of the variable I ut - k( X) X } . (The following argument is

likely to be valid under more general conditions, e. g., even when reflected

waves are taken into account.) It is seen that the non-linear inertia terms

for electrons compared to 8V'/ t are of the order Veolk + (dk/dinX)}/j,

where Veo is a typical electron velocity. When electromagnetic waves

propagate into a non-uniform plasma of increasing density in the X direction,

dk/d 4.n X is a negative quantity. Thus, when consideration is limited to

electric fields such that Veo < < c, the speed of light in free space, these

inertia terms can be omitted. The terms V' + V' V may be

neglected on the same ground, when the macroscopic velocity of the plasma

is small compared to c, as in the present work. These terms should be

retained for a more detailed consideration of electromagnetic wave propagation

in a moving medium.

In addition, the pressure terms Vp0 and the viscous terms div T7' will

also be ignored under the assumption that these effects are relatively small

compared to those produced by the electromagnetic field. Thus, the energy

equations (14), and the equations of state (15), need not be considered further.
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Based on the preceded considerations, the two equations (13) can be

considerably simplified. Addition of these two reduced equations yields:

p - = YxB +jx -< jxB >, (24)
a t

where p= nim i + neme , and V' = (nimi~' + neme e )/p . By subtracting

ne aV /it from nic Va'/ t and omitting some higher order terms (ref. 2),

the following "current" equation is obtained:

meC EVB c xBI)+V'xB
ne e 2 at ne e

-<V'xB> -- (jxB-<jxB>)- 1j , (25)nee

where, in analogous with Spitzer's argument (ref. 2), Re' is assumed to be

proportional to j, V = (nim i V i +nemeVe )/p, and T1 is the electrical

resistivity of the plasma. A further approximation, as usually adopted

when the electromagnetic wave frequency w is large, is to omit all magnetic

terms in Eq. (25). Under this circumstance, it is generally recognized that

the perturbed motion of the ions (- V')is entirely negligible in the presence of

a high-frequency electric field. Here stability of the plasma flow is not

considered.

The final form of the current equation (25) becomes

me c kLi = - .(26)

ne e2  ) t(

This equation, together with Eqs. (16) to (23), can be properly called

the field equations. The continuity equation and the momentum equation,

Eq. (24) for the ions, need not be used, provided the perturbed motion of

the ions is disregarded. It should be noted that, when electrostatic waves

are considered, the pressure gradient VPe should be restored in Eq. (26).
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IV. FLOW EQUATIONS WITHOUT THE EFFECTS OF DIFFUSION AND
CHARGE SEPARATION

The flow equations (6), (7), (10, and (11) can be considerably reduced when

diffusion and charge separation are -lisregarded, i. e., V. = V = V, and n. = n = n.
1 e i e

(It is not necessary, at this point, to assume nil = ne'. ) First, it is noted

that by the argument concerning the perturbed motion of protons, the term

< Vi'> in Eq. (10) and some of the terms containing V-I in Eqs. (7), (10), and

(11) can be omitted.

By adding the two momentum equations (7), and omitting terms of the

order me /m i , the following equation is obtained:
- -- --

n(miV • VV + meVe Ve')= - vp+ div +< jx B >, (Z7)

where p = pi + p e , and T7 is the viscous stress tensor of the plasma.

An energy equation for the plasma can be obtained by adding up Eqs.

(10) and (11):

divV [I, n(m V2 + me<Ve>) +2 kn (T. + Te)-T] +3e <JE>,(2S)

where qi is neglected, since it is much smaller than ie (ref. 3). Unless

the temperatures of the protons and the electrons are assumed to be

equal, an additional energy equation is needed. The energy equation for

protons, Eq. (10), with proper simplification can be used for this purpose:

div nm.V +- n Ti - Qi (9)
I Y-l1 /1

where (ref. 1)

Qi 3nek (Te - Ti) me/mi Te  (30)

Te = 3me 1 / 2 (kTe)3/2/4(T)1/2 e4 ne tnA (31)
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and

2 n e  . (32)TiT

Eq. (28) shows the Ohmic heating of the plasma while, as evident from

Eq. (29), the protons are assumed to gain energy only from the electrons

by collisions between protons and electrons. An energy equation for the

electrons can be obtained by subtracting Eq. (29) from Eq. (28). The

resulting equation is:

div nV kT e + me < V <\>+>-- i , (33)

k (e+- 2 e e

and demonstrates that the Ohmic heating acts directly only on the electrons.

This conclusion is, of course, a direct consequence of the present theory.

However, all these results appear to be physically reasonable approximations.

Hence, when effects of diffusion and charge separation are neglected, the

flow equations are the momentum equation, Eq. (27), the energy equations, Eqs. (28)

and (29), the equation of state p = kn (Te + Ti ) and the continuity equation

div (nV) = 0. The terms <Ve > andVe VVe' can be expressed in terms of

j. These flow equations and the field equations given in Section IV form a

determinate system of equations. The transport coefficients of viscosity and

thermal conductivity for the plasma have been evaluated by Chapman in

reference 3, and will not be reproduced here.
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V. SOME GENERAL CONSIDERATIONS

A basic property of plasmas is the tendency toward electrical neutrality.

Hence, the effects of charge separation can be disregarded inside the plasma

except, e. g., when a plasma sheath is considered. However, consideration

of charge separation may lead to significant new phenomena in plasma flows,

in which strong pressure and temperature gradients exist. This is due to

the fact that pressure and temperature gradients tend to promote diffusion

and charge separation in the plasma (ref. 4). Such is the case when strong

shock waves are present in a plasma. Theoretical analyses (refs. 5, 6) have

shown that, when charge separation is considered, for most plasmas the

shock structure is no longer of the conventional type with monotonic rise

in temperature, pressure, etc. Instead, the flow quantities are found to be

oscillatory (in space coordinate) throughout the shock front. This seems to

indicate the importance of charge-separation effects in the interaction of

electromagnetic waves and shock waves in a plasma.

An analysis of the interaction of electromagnetic waves and shock waves

in a non-uniform plasma, including charge-separation effects, is evidently

a difficult mathematical problem. It is necessary to resort to the original

system of flow equations given in Section II, although some simplifications

are possible. Moreover, it may be necessary to consider the induced

electrostatic waves (ref. 7) and their coupling with the electromagnetic waves.

Further study of this problem is being made.

The present method of analysis has also been applied to the interaction

problem for partially-ionized gases. Additional flow equations are obtained
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for the neutral particles. The flow equations for the electrons and the ions

are modified to allow for the momentum and energy exchanges between the

neutral particles and the charged particles. The ionization potential of the

neutral particles, which are taken as monatomic, must also be taken into

account in the energy equation. Fluctuations of the electron density can also

be disregarded in the dynamic equations for partially-ionized gases because,

wherever the mean electron density is low, the interaction of the electro-

magnetic waves and the plasma flow will be very weak. Extension of this

theory to include dissociation and other effects can also be made without

any essential difficulty, but the problem will become increasingly more

complicated.
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VI. CONCLUDING REMARKS

A method of analysis and macroscopic equations have been presented

for the study of interactions between electromagnetic waves and non-uniform

plasma flows. This development is based on hydrodynamic equations given by

Shafranov in reference 1. More elaborate systems of such equations have

been obtained by Burgers (ref. 8). However, in view of the complexity of

the present problem, use of more elaborate but more complicated equations

does not appear to be warranted at this time.

The present method of analysis is similar in many aspects to that used

for the turbulent shear flows (ref. 9). It has been shown that the

physical nature of the interaction problem permits a determinate system

of governing equations to be obtained.
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